Real-Time Agent Systems

Konstantin Vikhorev, Brian Logan, Natasha Alechina
Agent Programming lab University of Nottingham, UK
Content

- Introduction
- Real-time Guarantees
- Changes to the BDI architecture
- AgentSpeak(RT): Agent Real-Time Architecture
- Future work
- Conclusion
Introduction

- **Real-time is**
 - not about being ‘fast’, it is about being ‘fast enough’ to act on surrounded environments in well-specified way.

- **Two differences:**
 - time constraints on individual activities;
 - mechanism to meet those time constraints with acceptable predictability.

- **Architectures for highly dynamic environments:**
 - PRS, Spark, JAM have to be individually programmed
BDI Model

- Three Components of BDI model:
 - **Beliefs** - represent the informational model of the agent's world;
 - **Desires (goals)** - represent the motivational state of the agent;
 - **Intentions** - represent the agent's choice of particular courses of action, that is, desires which the agent has chosen to pursue in the current situation.

 - **Events**: represent triggers for reactive activity by the agent.

- Reasoning cycle of a BDI agent:
 - Update beliefs;
 - Choose subset of desires;
 - Deliberate over desires and commit intentions to fulfill them.
Real-time Guarantees

- Two types of Real-Time guarantees.
 - **Hard Real-time** – agent must process input information and produce response in a defined time or before that time.
 - **Soft Real-Time** – agent may not necessarily in all cases respond at the required time.

- *Degree of “softness”* of a task characterised by confidence level, i.e. probability that a task should complete successfully before its deadline
Agent’s tasks are associated with a deadline and priority

A set of tasks which can all be achieved by the deadlines is termed \textit{feasible}.

A maximally feasible set of tasks, which contains high priority tasks in preference to low priority tasks is defined as \textit{priority maximal}.

\textbf{Real-time BDI agent} – an agent, an agent which commits to and, with confidence α, successfully executes a priority-maximal set of tasks by their deadlines.
Changes to BDI model

- Additional Information
 - Deadlines
 - Priorities
 - Duration

- Changes to BDI Execution cycle
 - Scheduling algorithm
Changes in the goal and belief notions:

- External events for goals and beliefs must have a *deadline* and a *priority*.

Changes in the plan notion:

- Plan inherits the *deadline* from top-level event.
- Plan also associated with a *duration*.
Changes to BDI reasoning

- Events are processed in priority order
 - the plans for each event are checked for a feasibility and an excitability.
- The time-limited matching of plans
 - selection stops when all events have an executable feasible plan or a user definable plan selection timeout is reached
- Effective task scheduling
Algorithm:
1. find the highest priority feasible intention;
2. find the next most important intention which is feasible for the existing schedule;
3. repeat 2 until no more intentions can be scheduled.

Earliest Deadline First execution
AgentSpeak(RT)

- Provide soft real-time guarantees.
 - Commits to and executes priority-maximal set of tasks with user-defined confidence level.
- AgentSpeak(RT) is an extension of AgentSpeak(L).
- Implemented on Java.
- Five components: a Belief Base, a Set of Events, a Plan Library, an Intention Structure, an Interpreter.
Beliefs and Goals

- **Beliefs** represent the state of the agent and its environment.
- Beliefs are represented as ground atomic formulas.
- A **Belief base** contains current beliefs about the world.

 - lecture-notes(agents101,myNotes)
 - open(library)

- A goal is a state the agent wish to bring about or a query to be evaluated.

 - !prepare-lecture(agents101)
 - ?lecture-notes(agents101,Y)
Events

- Changes in the agent’s beliefs or the acquisition of new achievement goals give rise to events.

- We distinguish between
 - internal events generated by an agent’s program
 - external events originated by a user or another agent

- External events may optionally specify a deadline and a priority

```prolog
+!prepare-lecture(agents101) [50,9];
+lunch-time [40,7];
```
Plans

- **Plan includes:**
 - Triggering event – used to select plan for possible execution
 - Precondition – triggering condition
 - Body – sequence of activities

```plaintext
t!borrow-book(B) : open(library) <-
go to(library);
!pickup(B).
```

Real-Time Agent Systems
The expected execution time for an action or plan φ at confidence level α is given by

$$t_e = et(\varphi, \alpha_r)$$
Interpreter

Real-Time Agent Systems

Konstantin Vakhorev
Example(1)

Goals:

+!prepare-lecture(agents101)[50,9];
+!borrow-book(R&N)[30,2];

Beliefs:

+lunch-time[40,7];
+lecture-notes(agents101,myNotes)
+open(library)
Example(2)

Plans:

+!prepare-lecture(X) : lecture-notes(X,Y) <- revise-lecture(Y).
+!borrow-book(B) : open(library) <- goto(library); !pickup(B).
+!pickup(X) : <- take(X).
+lunch-time : <- eat-sandwich.
Example (3)

- $d_1 = 35\text{min}$, $d_2 = 12\text{min}$, $d_3 = 2\text{min}$, $d_4 = 20\text{min}$

- Intentions: Plan 1 (50,9), Plan 4 (40,7), Plan 2 (30,2).

- First and second intention can’t be accomplished by deadlines

- Resulting schedule includes first and third intention.
Multi-Thread Execution

- **Parallel execution of tasks:**
 - Enhanced Tasks Specifications
 - New scheduling algorithm for parallel execution of agent’s tasks.

- **Task merging:**
 - merging intentions which have common parts, to allow parallel execution of an agent’s tasks on the single processor.
Conclusion

Applications:
- Robot control systems, traffic control systems, finance systems
- Simulation of problems where data has to be processed in real-time.

Contribution:
- Analysis of the meaning of RT guarantees for AI systems.
- Propose a new agent architecture AgentSpeak(RT), which provides a simple, predictable framework for agent developers.
- Propose several directions for a future work.
Questions???

Thank you