Robust Mixture Modeling using the Pearson Type VII Distribution

J. Sun

Centre for Plant Integrative Biology & School of Computer Science, University of Nottingham

16 Feb. 2012
1 Introduction

2 Pearson Type VII Distribution Mixtures
 - Developing the EM Algorithm for the Pearson Type VII Mixtures
 - Outlier Detection Criterion

3 Experimental Results
 - The synthetic data and illustrative demonstration
 - Comparison of MoT and MoP on Outlier Detection

4 Conclusions
Outline

1 Introduction

2 Pearson Type VII Distribution Mixtures
 • Developing the EM Algorithm for the Pearson Type VII Mixtures
 • Outlier Detection Criterion

3 Experimental Results
 • The synthetic data and illustrative demonstration
 • Comparison of MoT and MoP on Outlier Detection

4 Conclusions
Clustered is the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait - often proximity according to some defined distance measure.

Data clustering is considered as a form of unsupervised learning in machine learning.
Finite mixture modelling (FMM) is a commonly used parametric data clustering method in the machine learning community.

In FMM, data are assumed to be sampled from a mixture of probability distributions, i.e.

\[p(t) = \sum_{k=1}^{K} \pi_k p(t|k) \]

where \(p(t) \) is the likelihood or probability of the data point \(t \), \(\pi_k, 1 \leq k \leq K \) is the mixing proportions, and \(p(t|k) \) is the conditional probability, i.e. the probability of the data point in the \(k \)-th component.
With different variable types, we can assume different conditional probability \(p(t|k) \).

Mixture of Gaussian (MoG) is the most popular clustering method for continuous variables.

In MoG, each mixture component \(p(t|k) \) is a Gaussian distribution \(\mathcal{N}(t|\mu_k, \Lambda_k) \):

\[
\mathcal{N}(t|\mu_k, \Lambda_k) = \frac{|\Lambda_k|^{-\frac{1}{2}}}{(2\pi)^{-d/2}} \exp \left(-\frac{1}{2} (t - \mu_k)^T \Lambda_k^{-1} (t - \mu_k) \right)
\]
Given a data set \(\mathcal{Y} = \{t_1, \cdots, t_N\} \), we need to estimate the parameters of the mixture models. In MoG, the parameters are \(\Theta = \{\mu_k, \Lambda_k, \pi_k, 1 \leq k \leq K\} \).

To estimate the parameters, the maximum likelihood (ML) approach is usually applied. We need to maximize the log-likelihood function:

\[
\mathcal{L}(\Theta|\mathcal{Y}) = \log \left(\prod_{n=1}^{N} p(t_n|\Theta) \right) = \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k p(t_n|k) \right)
\]
• To maximize $\mathcal{L}(\Theta|\mathcal{Y})$, usually the Expectation-Maximization (EM) algorithm is applied.

• Notations:
 • \mathcal{Y}: the observed variables;
 • \mathcal{Z}: the latent variables;
 • $p(\mathcal{Y}, \mathcal{Z})$ is called the complete likelihood;
 • $p(\mathcal{Z}|\mathcal{Y})$ is called the posterior distribution.
The EM Algorithm

- E-step (Expectation):
 \[Q(\Theta, \Theta^{(i-1)}) = E\left[\log p(Y, Z|Y, \Theta^{(i-1)}) \right] \]

- M-step (Maximization):
 \[\Theta^{(i)} = \arg \max_{\Theta} Q(\Theta, \Theta^{(i-1)}) \]

where

\[E\left[\log p(Y, Z|Y, \Theta^{(i-1)}) \right] = \int_{z \in \mathcal{Z}} \log p(Y, z|\Theta) \cdot \frac{p(z|Y, \Theta^{i-1})}{\text{Posterior}} \, dz \]

Complete log-Likelihood
To apply the EM algorithm to the MoG, we can introduce a latent variable z_n for each data point. $z_n = k$ means that the data point t_n belongs to the k-th cluster.

Given the latent variable, we can write the complete log-likelihood of the MoG as follows:

$$
\mathcal{L}_C(Y, Z|\Theta) = \sum_n \sum_k \delta(z_n = k) \log \left[p(t_n|k)\pi_k \right]
$$

where $\delta(z_n = k)$ is the Kronecker delta, and $Z = \{z_1, \cdots, z_N\}$.
The EM algorithm for the MoG can be described as follows:

- **E-step**: Compute the posterior of z_n:

 $$p(z_n = k | t_n) = \frac{p(t_n | k) \pi_k}{\sum_{k'} p(t_n | k') \pi_{k'}}$$

- **M-step**: Maximize \mathcal{L}_C for the parameters:

 $$\mu_k = \frac{\sum_n p(z_n = k | t_n) t_n}{\sum_n p(z_n = k | t_n)}$$

 $$\Lambda_k = \frac{\sum_n p(z_n = k | t_n) (t_n - \mu_k)(t_n - \mu_k)^T}{\sum_n p(z_n = k | t_n)}$$

 $$\pi_k = \frac{\sum_n p(z_n = k | t_n)}{N}.$$

MoG usually works well.

But it is sensitive to outliers.

Definition\(^1\): An outlying observation, or outlier, is one that appears to deviate markedly from other members of the sample in which it occurs.

Demo.

To deal with the outliers, usually the Student t-distribution is used as the building block, i.e.

\[p(t|k) = S_t(t|\mu_k, \Lambda_k, \nu_k) \]

where

\[
S_t(t; \mu, \Lambda, \nu) = \frac{|\Lambda|^{-\frac{1}{2}} \Gamma\left(\frac{\nu+d}{2}\right)}{(\pi \nu)^{\frac{d}{2}} \Gamma\left(\frac{\nu}{2}\right) \left\{1 + \frac{\Delta^2}{\nu}\right\}^{\frac{\nu+d}{2}}}
\]

- \(\nu \) is the degree of freedom. It can be proved that as \(\nu \to \infty, S_t \to \mathcal{N} \).
Outline

1. Introduction

2. Pearson Type VII Distribution Mixtures
 - Developing the EM Algorithm for the Pearson Type VII Mixtures
 - Outlier Detection Criterion

3. Experimental Results
 - The synthetic data and illustrative demonstration
 - Comparison of MoT and MoP on Outlier Detection

4. Conclusions
• We introduce a new distribution, called Pearson Type VII distribution, which subsumes the Student t-distribution.

• The Pearson VII distribution is of the following form:

\[
p(t; \mu, \Lambda, m) = \frac{\Gamma(m)}{\pi^{d/2} \Gamma(m - \frac{d}{2})} |\Lambda|^{-\frac{1}{2}} [1 + \Delta^2]^{-m}
\]

where \(\Delta^2 = (t - \mu)^T \Lambda^{-1} (t - \mu) \), \(m > d/2 \), \(\Gamma(\cdot) \) is the gamma function.

• The Student t-distribution is a special case of the Pearson type VII distribution if we set

\[
m = \frac{\nu + d}{2}, \Lambda = \Lambda \nu.
\]
Figure: The Pearson type VII distribution with different degrees of freedom.
As before, we can introduce a discrete latent variable z_n for each data point. The E-step is the same as in the MoG:

$$p(z_n = k|t_n) = \frac{p(t_n|k)\pi_k}{\sum_{k'} p(t_n|k')\pi_{k'}}$$

except that $p(t_n|k)$ is the Pearson Type VII distribution.

In the maximization of the complete likelihood, we cannot obtain analytical solutions for $\{\mu_k, \Lambda_k\}$ of the Pearson VII distributions.

$$\mathcal{L}_C(Y, Z|\Theta) \propto \sum_n \sum_k p(z_n = k|t_n) \log \left[\pi_k |\Lambda_k|^{-\frac{1}{2}} \left[1 + \Delta_k^2 \right]^{-m_k} \right]$$
To obtain analytical solutions of the parameters, we can introduced a new latent variable u_n for each data point t_n.

Precisely, we prove that:

$$p(t; \mu, \Lambda, m) = \int_0^\infty \mathcal{N}(t|\mu, \frac{\Lambda}{u})G(u|m - \frac{d}{2}, \frac{1}{2})du$$

where

$$G(u|a, b) = b^a u^{a-1} \frac{\exp\{-bu\}}{\Gamma(a)}$$

is the gamma distribution with parameters a and b.

Developing the EM Algorithm for the Pearson Type VII Mixtures

- Given the scale mixture representation of the Pearson VII distribution, the EM algorithm can be obtained.
- E-step: two latent variables z_n, u_n for each data point t_n. Their posteriors can be computed as follows:

$$
p(z_n = k | t_n) = \frac{p(t_n | k) \pi_k}{\sum_{k'} p(t_n | k') \pi_{k'}}
$$

$$
p(u_n | t_n, k) = \mathcal{G}(u_n | a_{nk}, b_{nk})
$$

where

$$
a_{nk} = m_k
$$

$$
b_{nk} = \frac{(t_n - \mu_k)^T \Lambda_k^{-1} (t_n - \mu_k) + 1}{2}
$$
M-step. The parameters can be obtained:

\[\mu_k = \frac{\sum_{n} p(z_n = k | t_n) \langle u_n \rangle_k t_n}{\sum_{n} p(z_n = k | t_n) \langle u_n \rangle_k} \]

\[\Lambda_k = \frac{\sum_{n} p(z_n = k | t_n) \langle u_n \rangle_k (t_n - \mu_k)(t_n - \mu_k)^T}{\sum_{n} p(z_n = k | t_n)} \]

\[\pi_k = \frac{1}{N} \sum_{n} p(z_n = k | t_n) \]

where \(\langle u_n \rangle_k = \int u_n p(u_n | t_n, k) du_n = \frac{a_{nk}}{b_{nk}} \)
The M-Step Differences between MoG and MoP

\[
\mu_k = \frac{\sum_n p(z_n = k|t_n) \langle u_n \rangle_k t_n}{\sum_n p(z_n = k|t_n) \langle u_n \rangle_k}
\]

\[
\Lambda_k = \frac{\sum_n p(z_n = k|t_n) \langle u_n \rangle_k (t_n - \mu_k)(t_n - \mu_k)^T}{\sum_n p(z_n = k|t_n)}
\]
The degree of freedom can be obtained by solving the following non-linear equation

\[
\sum_n p(z_n = k | t_n) \left[\langle \log u_n \rangle_k - \log(2) - \psi \left(m_k - \frac{d}{2} \right) \right] = 0
\]

or specifically:

\[
\psi \left(m_k - \frac{d}{2} \right) = \sum_n \frac{p(z_n = k | t_n) [\langle \log u_n \rangle_k - \log(2)]}{\sum_n p(z_n = k | t_n)}
\]

where \(\psi(\cdot) \) is the digamma function, i.e.

\[
\psi(x) = \frac{d}{dx} \log \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}
\]
The posterior expectation of \(u \) can be used as an indicator of outliers.

Given a data point \(t \), if the value

\[
e(e \equiv \sum_k p(z = k|t) \frac{2m_k}{(t - \mu_k)^T \Lambda_k^{-1}(t - \mu_k) + 1})
\]

is sufficiently small, \(t \) can be flagged as an outlier, or approximately, the value:

\[
\kappa = \sum_k p(z = k|t)(t - \mu_k)^T \Lambda_k^{-1}(t - \mu_k)
\]

is sufficiently large.
Outline

1. Introduction

2. Pearson Type VII Distribution Mixtures
 - Developing the EM Algorithm for the Pearson Type VII Mixtures
 - Outlier Detection Criterion

3. Experimental Results
 - The synthetic data and illustrative demonstration
 - Comparison of MoT and MoP on Outlier Detection

4. Conclusions
Demo
The mixture of Student t-distribution (MoT) is capable of robust clustering and outlier detection. The comparison between the MoP and the MoT is in terms of

- the rates of outlier detection accuracy on the training data sets and the test data set;
- the out-of-sample log-likelihood (measuring the clustering capability); and
- the CPU time used for training (measuring the convergence speed).
Comparison of MoT and MoP on Outlier Detection

Figure: The comparison of the MoP and the MoT in terms of (a) the outlier detection rates (measured by AUC) of the training data sets; (b) the AUC values of the test data sets; (c) the out-of-sample log-likelihood; (d) the CPU time spent on training.
Outline

1 Introduction

2 Pearson Type VII Distribution Mixtures
 - Developing the EM Algorithm for the Pearson Type VII Mixtures
 - Outlier Detection Criterion

3 Experimental Results
 - The synthetic data and illustrative demonstration
 - Comparison of MoT and MoP on Outlier Detection

4 Conclusions
A new robust clustering algorithm based on Pearson Type VII mixtures.

- The scalar representation of the Pearson type VII distribution.
- An outlier detection criterion.
- Experimental results showed that the PearsonVII mixture is viable than the Student t mixtures.
Questions?

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Pearson Type VII Distribution Mixtures</th>
<th>Experimental Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>