Definitions

- **Biomarker** substance used as an indicator of a biologic state.
 - Its detection can indicate a particular disease state
- **IHC** (Immunohistochemistry) process of localising proteins in cells of tissue section; widely used:
 - in the diagnosis of cancer
 - to understand the distribution and localisation of biomarkers in different parts of a tissue

Outline

- Aims and objectives
- Definitions
- Framework
 - Clustering
 - Supervised learning
 - Validation on new data
- Conclusions and questions

Aims and objectives

- Develop an original framework with multiple steps to extract most representative classes from any dataset
 - Refine the phenotypic characterisation of breast cancer
- Move the medical decision making process from a single technique approach to a multi-technique one
 - Guide clinicians in the choice of the favourite and most powerful treatment

Framework (1)

```
Dataset
  Pre-processing
    Clustering
      HCA
      FCM
      KMI
      PAM
```

Data pre-processing

- Deletion of missing values
- Homogeneous variables
- Compute descriptive statistics
Clustering
- Four different algorithms:
 1. Hierarchical (HCA)
 2. Fuzzy c-means (FCM)
 3. K-means (KM)
 4. Partitioning Around Medoids (PAM)
- Methods run with the number of clusters varying from 2 to 20

Definition of classes
- Consensus clustering:
 - Align labels to have similar clusters named in the same way by different algorithms
 - Take into account patients assigned to the same group

Case study
- Patients entered into the Nottingham Tenovus Primary Breast Carcinoma Series between 1986 and 1998
- 1076 cases informative for all 25 biological markers
- Clinical information (grade, size, age, survival, follow-up, etc.) available

If \(n \) is unknown...
- Validity indices computation
- Defined considering the data dispersion within and between clusters
- According to decision rules, the best number of clusters may be selected

Characterisation & agreement
- Visualisation techniques
 - Biplots
 - Boxplots
- Indices for assessing agreement
 - Cohen’s kappa (\(\kappa \))
 - Rand

Example: biplots (PCA)
- K-Means
- PAM
Example: boxplots

Previous work: 4 groups

Our results: 6 groups

Framework (1)

Dataset
Pre-processing
Clustering

HCA FCM KM PAM

n known?

Characterisation & agreement

Validity indices

Classes

Framework (2)

Classes

Supervised learning

C4.5 MLP - ANN Naïve Bayes NPBC

Supervised learning (1)

- Model-based classification for prediction of future cases
- Aims
 - High quality prediction
 - Reduce number of biomarkers used
 - Prefer ‘white-box’ prediction model
Supervised learning (2)

- Different classification techniques:
 - C4.5
 - Multi-Layer Perceptron Neural Network (MLP)
 - Naïve Bayes (NB) or Non-Parametric Bayesian Classifier (NPBC)

Characterisation of classes

- Biplots
- Boxplots
- Survival analysis
- Relation with other clinical information

Model based clustering

- Affinity Propagation (Frey and Dueck, 2007)
 - Both pair comparison and a probability model are used to choose the grouping
 - Real-valued messages are exchanged between data points until set of exemplars and corresponding clusters emerge
 - Suggestion of the number of clusters
 - CPU time for AP higher than KM
 - AP not included in the framework

Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Classified</th>
<th>Misclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4.5</td>
<td>581 (87.6%)</td>
<td>82 (12.4%)</td>
</tr>
<tr>
<td>MLP</td>
<td>629 (94.9%)</td>
<td>34 (5.1%)</td>
</tr>
<tr>
<td>NB</td>
<td>617 (93.1%)</td>
<td>46 (6.9%)</td>
</tr>
<tr>
<td>NPBC</td>
<td>637 (96.1%)</td>
<td>26 (3.9%)</td>
</tr>
</tbody>
</table>

CPU time: KM v AP

- Graph showing comparison between KM and AP in terms of CPU time.
Validation of the framework
- Set of markers involved in breast cancer cell cycle regulation
- 347 patients and 4 markers
- Survival and grade available
- K-means and PAM used

Results
- \(k = 0.9 \) between KM and PAM
- 3 common classes found
 - Intermediate expression (class 1)
 - High expression (class 2)
 - Low expression (class 3)

Results: boxplots of classes

Results: Kaplan-Meier curves

Results: C4.5 decision tree

Main contributions
- Definition of six breast cancer classes
 - Two novel in literature
- Non-parametric approach for supervised learning
- Original framework for classes identification
Future work

- Clustering
 - Methods
 - Initialisation techniques
 - Distances
- Unclassified patients
- Complete analysis on histone markers

Thank You!

- Acknowledgements:
 - FP6 Marie-Curie EST Fellowship (FP6-007597)

Contact: d.soria@cs.nott.ac.uk