An Introduction to R: Statistics, Graphics and Data Mining

Daniele Soria
d.soria@cs.nott.ac.uk
IMA tutorial, 2 March 2010

Outline
- Why R?
- Download and install
- Data manipulation
- Basic statistics
- Graphics
- Clustering

Why R?
- It allows users to add additional functionality by defining new functions.
- Its graphical facilities produce publication-quality graphs which can include mathematical symbols.
- And most importantly...
 IT’S FREE!!

Download and install
- http://www.r-project.org
- On the left select CRAN
- Scroll down to find UK and select the University of Bristol link
- Select the OS you are using
- For Windows select base
- Download R 2.10.1 for Windows and install it

Let’s get started
- In R-2.10.1 folder, several packages (libraries) are already present
- Command line interface
- Follow suggestion and type `demo()`
- Type `demo(graphics)`
- Script files may be written in R
 1. I use an external editor, called Crimson Editor
- Create
 - Variable
 - Vector
 - Sequence
 - Replicate a value
- Length, max, min, mean, summary
- Dealing with missing values
- Vectors and matrices

Basic stuff
- Create
 - Variable
 - Vector
 - Sequence
 - Replicate a value
- Length, max, min, mean, summary
- Dealing with missing values
- Vectors and matrices
Load data
- UCI Machine Learning Repository
 - Download IRIS data
- `read.table(options)`
- Dataset information
 - Names of variables
 - Size
 - Tables
 - `ifelse` command

Graphics
- Pie charts
- Histograms
 - Add mean and median vertical lines
 - Add legend
- Boxplots
- Matrix of scatter plots
- 3D plots

Data Mining
- Clustering
 - K-means
 - PAM
 - Fuzzy c-means
- Plots of clustering results
- Principal component analysis

KM method
- Minimization of the objective function
 \[J(V) = \sum_{j=1}^{k} \sum_{i=1}^{c_j} \| x_i - v_j \|^2 \]
- \(\| x_i - v_j \| \): Euclidean distance between \(x_i \) and \(v_j \)
- \(c_j \): data points in cluster \(j \)
- \(v_j \) can be calculated as \(v_j = \frac{1}{c_j} \sum_{i=1}^{c_j} x_i \), \(j = 1, ..., k \)

KM method (cont.)

PAM method
- Based on the search for \(k \) representative objects (medoids) among the observations
- Minimum sum of dissimilarities among the observations to their closest medoid
- \(k \) clusters are constructed by assigning each observation to the nearest medoid
Additional resources

- R-Seek Search Engine
 - http://www.rseek.org

- R Reference Card
 - http://cran.r-project.org/doc/contrib/Short-refcard.pdf

- Use Google to look for specific commands and functions

Thank you!

Questions?

Contact: d.soria@cs.nott.ac.uk