Measuring the Directional Distance between Fuzzy Sets

Josie McCulloch, Christian Wagner, Uwe Aickelin
The outline of this presentation is as follows:

- Fuzzy sets
- Distance Measures
- Directional Distance Measures
- Non-normal fuzzy sets
- Non-convex fuzzy sets
- Future Work
- Questions
Fuzzy Sets

Crisp sets and Fuzzy sets

- Each element of a crisp set has a boolean membership value: 0 (False) and 1 (True)
- Each element of a fuzzy set has a membership value which lies between 0 and 1
- Fuzzy sets allows us to indicate a degree of uncertainty that an element belongs to the set.
Crisp set of “young”
Fuzzy set of “young”
Distance Measures

- A distance measure indicates how far apart two fuzzy sets are in their universe of discourse.
- For example, two fuzzy sets representing how delicious the food is at two restaurants, A and B.
Distance Measures

- The distance between fuzzy sets is calculated using vertical or alpha (horizontal) cuts.
- Vertical slices are usually used to indicate similarity
- whereas alpha-cuts are usually used to indicate distance
Distance Measures

Vertical Slices
\[d(A, B) = \frac{1}{n} \sum_{i=1}^{n} |\mu_A(x_i) - \mu_B(x_i)| \]

Alpha cuts
\[d(A, B) = \frac{1}{m} \sum_{i=0}^{m} \max\{|A_{\alpha l} - B_{\alpha l}|, |A_{\alpha r} - B_{\alpha r}|\} \]

Vertical Slices
(A, A) 0.0 0.538 0.396
(A, B) 0.0 3.495 6.262
(A, C)
The distance between fuzzy sets is measured by taking alpha-cuts.

The distance at alpha (α) is measured using the Hausdorff metric:

$$ h = \max\{|\bar{A}_l - \bar{B}_l|, |\bar{A}_r - \bar{B}_r|\} $$
Distance Measures

Alpha-cuts

- The results of each alpha-cut are combined and weighted to create a single value of distance.

\[d(A, B) = \frac{\sum_{\alpha=1}^{m} y_{\alpha} h(A_{\alpha}, B_{\alpha})}{\sum_{\alpha=1}^{m} y_{\alpha}} \]

- \(d(A, B) = 1.124, \quad d(B, A) = 1.124 \)

- But how can you tell which restaurant was rated more delicious than the other?
Altering the Hausdorff metric

The original Hausdorff metric \(h \), used to measure the distance between intervals

\[
h(\bar{A}, \bar{B}) = \max\{|\bar{A}_l - \bar{B}_l|, |\bar{A}_r - \bar{B}_r|\}
\]

(1)

An amended measure to account for distance

\[
h(\bar{A}, \bar{B}) = \begin{cases}
\bar{B}_l - \bar{A}_l, & \text{if } |\bar{B}_l - \bar{A}_l| > |\bar{B}_r - \bar{A}_r| \\
\bar{B}_r - \bar{A}_r, & \text{otherwise}.
\end{cases}
\]

(2)

Using (2), \(d(A, B) = 8 \) and \(d(B, A) = -8 \).
Movie Lens

Movie Lens is a dataset of film ratings given in the range 1 (poor) to 5 (great).

\[D(SMB, SW) = 3.333 \]
\[D(SW, SMB) = -3.333 \]

However, fuzzy sets are not always normally distributed.
Changing the films into a non-normal distribution

The membership value $\mu_A(x)$ now indicates the percentage of people who gave the value x for the film A.

Josie McCulloch, Christian Wagner, Uwe Aickelin
Non-normal Fuzzy Sets

Measuring the distance between non-normal fuzzy sets

- How do you measure the distance between a set and an empty set?
- How do you measure the distance between two empty sets?
Non-normal Fuzzy Sets

Measuring the distance between non-normal fuzzy sets

\[h(A_{\alpha}, \emptyset) = h(A_{\alpha_k}, B_{\alpha_k}) \text{ where } \alpha_k \text{ is the } \alpha\text{-level at} \]
\[\max\{|h(A_{\alpha}, B_{\alpha})|\} \forall \alpha \ A_\alpha \neq \emptyset \land B_\alpha \neq \emptyset. \]

- \(\alpha = 0.1, \ h = 1.44 \)
- \(\alpha = 0.2, \ h = 2.08 \)
- \(\alpha = 0.3, \ h = 2.36 \)
- \(\alpha = 0.4, \ h = 2.36 \)
- \(\alpha = 0.5, \ h = 2.36 \)
- distance \(= 2.261 \)

Josie McCulloch, Christian Wagner, Uwe Aickelin
Non-convex Fuzzy Sets

Measuring the distance between non-convex fuzzy sets

- The ratings for the film “All Dogs Go to Heaven 2” result in a non-convex fuzzy set.
- When taking an alpha-cut of a non-convex fuzzy set we no longer get an interval.
Measuring the distance between non-convex fuzzy sets

- $ADGH_\alpha$ is split into two intervals, $ADGH_{\alpha_1}$ and $ADGH_{\alpha_2}$.
- Next, we measure $h(ADGH_{\alpha_1}, SW_\alpha)$ and $h(ADGH_{\alpha_2}, SW_\alpha)$.
- Finally, calculate the average of these measures.
Future Work

Distance as a fuzzy set

- The distance between two fuzzy sets is represented as a fuzzy set.
- The greater the entropy of the result the more uncertain we are of the distance.
- Each alpha-cut of one fuzzy set is compared with each alpha-cut of the other fuzzy set.
Future Work

Distance as a fuzzy set

- Changing the direction reflects the resulting fuzzy set

![Graph showing membership values vs. rating and distance.]
Summary

To summarise

- We have created a distance measure which accounts for the direction as well as the magnitude of distance.
- We have solved measuring the distance of normal and non-normal fuzzy sets, as well as convex and non-convex fuzzy sets.
- We have demonstrated the applicability of the measure using real data.
Thanks you for listening.
Any Questions?