Some Transportation Research in ASAP (with my involvement)

Jason Atkin
RuBin Bai (Ningbo)
Juan Castro-Gutierrez
Dario Landa Silva
Geert De Maere
Daniel Karapetyan
Andrew Parkes
Rong Qu

Stanislava Armstrong (Arrivals)
Amadeo Ascó (Resources)
Chris Bayliss (Airline)
Edward Kent (VRP)
Urszula Neuman (Stands)
Stefan Ravizza (Ground)
Christofas Stergianos (Ground)
Overview

• Overview of problems

• Methods
 – Understand the problem, as experts
 – Model the problem
 – Evaluate potential solutions
 • Mathematical evaluation
 – Deterministic problem
 – Stochastic problem
 – Uncertain problem
 • Simulation to handle dynamics
 • Simulation to handle uncertainty
Arrival Sequencing

Obtain good, easily achievable landing sequences

- Separations depend upon aircraft

- Limitations of stacks
 - Costly to take from other than bottom

- Incoming flight paths

<table>
<thead>
<tr>
<th>WAKE VORTEX SEPARATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>UM</td>
</tr>
<tr>
<td>LM</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>L</td>
</tr>
</tbody>
</table>
Arrival Stacks

Multiple stacks available
- One flight per level on each
- Usually take from bottom level
 - Can take from bottom three if worthwhile – more workload
- Descend only when next level is empty
- Descent speed faster when two levels below are clear
Sequence-dependent separations:

- Wake vortex – heavier than lighter aircraft is bad
- Routes and speed – keep in-flight separation and avoid excessive downstream workload
A Holding Area (27R)

Consider what can, and should, be done on the ground
Stand hold allocation

- Sequence departures at the stands
- Absorb delay as stand hold
 - Start engines later, save fuel
- Heathrow version – running live since 2012
- Version for less constrained airports in trials
Aim: Reduce environment effect of airports

- Taxi time prediction
- Ground movement
- Improved predictions, fuel saving potential
Allocate stands to improve environmental effects

- Integration: consider effects upon ground movement and runway sequencing
- Restrictions for airlines or aircraft size/type
- Shadowing constraints upon nearby stand occupancy
- Inter-stand pushback or arrival time constraints – scarce taxiway resources
Vehicle Routing

• Considering real-world vehicle routing problems with unusual constraints
When should reserve crew be available to minimise cancellations/delays when some normal crew are unavailable
Summary

• Overview of problems
• Methods
 – Understand the problem as experts
 – Model the problem
 – Evaluate potential solutions
 • Mathematical evaluation
 – Deterministic problem
 – Stochastic problem
 – Uncertain problem
 • Simulation to handle dynamics
 • Simulation to handle uncertainty