iTRAQ - Integrated Traffic Management and Air Quality Control using Space Services

Benjamin N. Passow, David Elizondo, Eric Goodyer, Clare Edwards, Simon Witheridge and Jethro Shell

De Montfort University
Leicester, UK
De Montfort University, Leicester:
> 21000 students

Key Research Groups:
- **CCI** - Centre for Computational Intelligence
- **DIGITS** – DMU’s Interdisciplinary Group in Intelligent Transport Systems

- 30 Academics, 4 Professors, 3 Readers
- About 30 PhD students
- Significant funding from a variety of sources
- Strong International reputation
- Major contributor to excellent RAE results
Other research

Current projects:
• iTRAQ (going into a demonstration / commercialisation phase)
• KTP with RingTrack, developing an embedded tracker
• AcouSense – Acoustic Sensing of Traffic Related Parameters
• Elasticity Model for Urban Traffic
• Traffic Data Analysis using CI
• Creation of a Motion Sensing Dataset
• REEMS - developing an innovative Range Extender for Electric Vehicles

Research Interests:
• Intelligent Traffic and Air Quality Management
• Acoustic Sensing
• Mobile Robotics
• Evolutionary Computing
• Control Engineering
• Intelligent and Traditional Signal Processing
• Embedded System Development
• Theory and Application of Computational Intelligence
Objective

- Automatically optimise traffic
- Automatically optimise air quality
- Inform operators, users, public, ...
 - Accurate forecasts of local traffic flow and delay
 - Accurate forecasts of local pollution levels
 - Enhanced traffic flow, delay, and air quality through using proposed strategies
- Adapt to and deal with to ever-changing traffic and air pollution conditions

Conflicting objectives
Air Quality
Air Quality
Air Quality
Traffic Monitoring
Floating Car Data (GNSS)
Architecture Overview

- Traffic data (incl. EO)
- Time
- Met data
- In-situ Air Quality
- CityScan
- EO AQ data (OMI,GOME-2)

Computational Intelligence Module

Traffic Simulator

City Plan

Demand Model

Air quality model

MACC modelled AQ

Feedback for iterative optimisation process

Optimised Traffic and Air Quality Management Strategy
Artificial Neural Networks

- **SCOOT data**:
 - Flow $f(t)$
 - Flow $f(t-1)$

- **Time stamp**:
 - Hour of Day
 - Day of Week

- **Meteorological data**:
 - Temperature
 - Cloud Coverage
 - Air Pressure
 - Amount of Rain
 - Wind Speed
 - Wind Direction

- **Adaptive Filter**
- **3 months historic data**
- **Training**

- **Forecaster**

- **Flow** $f(t+1)$
Artificial Neural Networks

Measure traffic flow at t + 1 [PCUs]

Traffic flow forecasts by FF-BP ANN with 7 HN, non-filtered [PCUs]

Traffic flow forecasts by FF-BP ANN with 7 HN, filtered [PCUs]
Region of Interest
Actual Forecast Results

Traffic Flow (veh/hr)

Air Quality NO2 (ugm-3)
Traffic Flow Prediction Results

Forecasted

Measured
Actual NRT Results (Simulation)

- a) Average over all operational hours
- b) AM peak - 8 to 9 o'clock
- c) Inter-peak – 12 to 13 o'clock
- d) PM peak – 16 to 17 o'clock
Strong increase in traffic flow
Substantial decrease in delay
While simultaneously managing air quality
Conclusions

• iTRAQ can provide:
 • Adequate and useful forecasts of traffic conditions and air quality
 • Increase in traffic flow 89% of the time (average 0.6%)
 • Reduction of delay every time (average 3%)
 • Similar levels of AQ but with shorter duration (in hourly simulations)
 • Traffic Management: Predictive rather than reactive
 • Better local management of AQ
 • A larger system that works on more junctions can enhance the traffic and AQ in a much greater way!
Future Work

• Demonstrate full implementation of system (in progress for next 2 years)

• Test system performance in operation
 – Quality of forecasts
 – Optimisation
 – Gain (how to proof this?!

• Generate a Benchmark for Optimisation community

• Integrate other services (and objectives)

• Expand this data-driven ITS approach into other domains
DIGITS – DMU’s Interdisciplinary Group in Intelligent Transport Systems

Who we are:
- 20 Members, 3 Professors, 2 Readers and quickly growing
- PhD and Master students
- Significant research funding from a variety of sources, incl. EU and ESA
- Gaining strong international reputation
- Researching and delivering cutting edge technologies for the transport sector

What we do:
- Intelligent integrated traffic management and air quality control
- Mechanical behaviour of pavement and rail track materials
- Airport and harbour environment modelling and evaluation
- Geographical information systems and data mining
- Computational intelligence
- Embedded systems and ECU design
- Telematics